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Abstract

A new approach for stabilizing unstable reduced order no¢@@DOMs) for linear time-
invariant (LTI) systems through aa posteriori post-processing step applied to the algebraic
ROM system is developed. The key idea is to modify the unsteiglenvalues of the ROM sys-
tem by moving these eigenvalues into the stable half of thepbex plane. It is demonstrated that
this modification to the ROM system eigenvalues can be actisihegl using full state feedback
(a.k.a. pole placement) algorithms from control theoryisEpproach ensures that the modified
ROM is stable provided the system’s unstable poles are aitaitie and observable; however,
the accuracy of the stabilized ROM is not guaranteed. To dgrites dificulty and guarantee an
accurate stabilized ROM, a constrained nonlinear leas&ss optimization problem for the sta-
bilized ROM eigenvalues in which the error in the ROM outputiinimized is formulated. This
optimization problem is small and therefore computatityniakexpensive to solve. Performance
of the proposed algorithms is evaluated on two test casesimh ROMSs constructed via the
proper orthogonal decomposition (PGBalerkin method dier from instabilities.
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1. Introduction

As computing power has increased, so has the complexity &f-phwysics models. Simul-
taneously, there has been a continuing push to incorponagertainty quantification (UQ) into
high-fidelity simulations. Unfortunately, integrating U€chniques into high-fidelity simulation
codes can present an intractable computational burderodhe high-dimensional systems that
arise, as well as the need to run these simulations many iimesier to explore a space of
design parameters or uncertain inputs.

Email address:ikalash@sandia.gov (Irina Kalashnikova)
Preprint submitted to Computer Methods in Applied Mechsuaicd Engineering January 8, 2014



Reduced order modeling is a promising tool that can enaliemly UQ, but also on-the-
spot decision-making, optimization giodcontrol. A reduced order model (ROM) is a surrogate
model constructed from a full order (high-fidelity) modeQqM) that retains the essential physics
and dynamics of the FOM, but has a much lower computationstl clumerous approaches
to construct ROMs exist, from simply running a numerical ation on a coarser mesh, to
surrogates obtained from data-fitting (e.g., Kriging iptdation). More commonly, however,
the term “reduced order model” refers to a projection-basddced order model, the subject of
the present work. The basic idea of projection-based retlaoger modeling is to project the
state of a large dimensional space onto a small dimensiabapsce that contains the essential
dynamics of the system. Examples of projection-based mtkiction approaches include
proper orthogonal decomposition (POD) [13, 14, 9], baldmm®per orthogonal decompaosition
(BPOD) [19, 11], balanced truncation [16, 5], the reducesidamethod [15, 32], and Krylov-
based techniques [31].

In order for a ROM to serve as a viable mathematical model dfysipal system of interest,
it is important that it preserves certain crucial properié the original system. Particularly
important is that the ROM maintains numerical stability if inderlying physical system, as
stability is a prerequisite for the ROM’s accuracy and cogeace. Some projection-based model
reduction techniques give rise to ROMs withapriori stability guarantee. One example of such
a method is balanced truncation [16, 5]. Unfortunately,abmputational cost of this method,
which requires the computation and simultaneous diagratadin of infinite controllability and
observability Gramians, makes balanced truncation coatiomally intractable for systems of
very large dimensions (i.e., systems with more than 10,8ffeks of freedom (dofs) [12]).
Among the most popular model reduction techniques that@matationally tractable for very
large systems are the POD method [13, 14, 9] and the BPOD uh¢f$p 11]. In general,
these methods lack anpriori stability guarantee. In [18], Amsallert al. suggest that POD
and BPOD ROMs constructed for linear time-invariant (LTyst&ms in descriptor form tend
to possess better numerical stability properties than POM&constructed for LTI systems in
non-descriptor form. Although heuristics such as thesstgitiis in general unknowa priori
if a ROM constructed using POD or BPOD will preserve the ditghproperties of the high-
fidelity system from which the model was constructed. HemcBROM might be stable for a
given number of modes, but unstable for other choices oblsse; see [10, 3, 4] for examples
of this for POD models of compressible flow.

A literature search reveals that approaches for develogtalgility-preserving projection-
based ROMs based on POD and BPOD fall into roughly three cee=g overviewed briefly
below.

The first category of methods derivesyriori) a stability-preserving model reduction frame-
work, often specific to a particular equation set. In [12]wRy et al. show that Galerkin pro-
jection preserves the stability of an equilibrium pointtz pbrigin if the ROM is constructed in
an “energy-based” inner product. In [3, 4], Baragteal. demonstrate that a symmetry transfor-
mation leads to a stable formulation for a Galerkin ROM fax limearized compressible Euler
equations [3, 4] and non-linear compressible Navier-Stacuations [17] with solid wall and
far-field boundary conditions. In [1], Seret al. propose applying the stabilizing projection
developed by Baronet al. in [3, 4] to a skew-symmetric system constructed by augmersi
given linear system with its adjoint system. This approaeldg a ROM that is stable at finite
time even if the solution energy of the full-order model iswing. In [35, 40], Sirisupet al.
develop a method for correcting long-term unstable beldsioPOD models using a spectral
viscosity (SV) difusion convolution operator. The advantage of approactasasithese is they
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are physics-based, and guarardegriori a stable ROM; the downside is that they can be dif-
ficult to implement, as access to the high-fidelity code/anthe governing partial éierential
equations (PDES) is often required.

A second category of methods is aimed to remedy the so-cafiede truncation instabil-
ity”. These methods [36, 37, 38, 23, 41], motivated by thesobmtion that higher order modes
can give rise to nonphysical instabilities in the ROM systane often physics-based and mini-
mally intrusive to the ROM. In [23], a ROM stabilization metiology that achieves improved
accuracy and stability through the use of a new set of basistiins representing the small,
energy-dissipation scales of turbulent flows is derived biafgwiczet al. The stabilization of
ROMs using shift modes and residual modes was proposed jaf@i7[38] by Noaclket al. and
Bergmanret al. respectively. Other authors, e.g., Terragnhal. [41], have demonstrated that
the stability and performance of a ROM can be improved by twdgphe POD manifold to the
local dynamics.

The third category of approaches are those which stabilizenatable ROM through a post-
processingd posterior) stabilization step applied to an unstable algebraic ROstiesy. Ideally,
the stabilization only minimally alters the ROM physics, that the ROM’s accuracy is not
sacrificed. In [2], Amsallenet al. propose a method for stabilizing projection-based linear
ROMs through the solution of a small-scale convex optinmraproblem. In [22], a set of
linear constraints for the left-projection matrix, givdretright-projection matrix, are derived
by Bondet al. to yield a projection framework that is guaranteed to geeesastable ROM.
In [20], Zhu et al. derive some large eddy simulation (LES) closure models @DAROMs
for the incompressible Navier-Stokes equations, and dstrate numerically that the inclusion
of these LES terms yields a ROM with increased numericalilgtabln [39], Couplet et al.
propose methods for correcting the behavior of a low-ord@DRzalerkin system through a
codficient calibratiopminimization. A nice feature of these and similar approadkehat they
are easy to implement: often the stabilization step can Ipéeghin a “black-box” fashion to
an algebraic ROM system that has already been constructege\ér, the approaches can give
rise to inconsistencies between the ROM and FOM physiceslblydimiting the accuracy of the
ROM.

The present work proposes and developgeaROM stabilization method for LTI systems
that falls into the second category of methods describegteab®his approach can be used to
stabilize ROMs constructed usiagychoice of reduced basis (e.g., POD [8], balanced truncation
[16, 5], proper generalized decomposition [42], among heThe key idea, motivated by the
concept of full state feedback (a.k.a. pole placement) imrobtheory, is to change the unstable
eigenvalues of a system matrix by pushing them into the establf of the complex plane. The
eigenvalues of a ROM system matrix can be modified by applginectly full state feedback
(a.k.a. pole placement) algorithms from control theory7qf,that is, by adding to the ROM
system a linear feedback control term, and solving for tedliack matrix such that the stabilized
ROM system has a desired set of eigenvalues. However, tpi®agh can change the ROM
physics, thereby making the ROM inaccurate. To alleviatedifficulty, an alternative algorithm
is developed in which a constrained nonlinear least-sgu@ytmization problem that minimizes
the error in the ROM output (thereby maximizing the accurmafcthe ROM) is formulated. The
said optimization problem is small, with at most as many @sfthe number of dofs in the ROM,
and therefore computationally inexpensive to solve.

The remainder of this paper is organized as follows. Gabegpkojection-based model reduc-
tion for LTI systems is reviewed in Section 2. Section 3 pnés¢he two ROM stabilization algo-
rithms described above. The first employs full state feeklfa&.a. pole placement) algorithms
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from control theory to change an unstable ROM's unstablereiglues (Section 3.1); the second
solves a constrained nonlinear least-squares optimizatioblem for the ROM eigenvalues in
which the ROM output error is minimized, and changes thersigieies directly in the ROM
system using the eigenvalue decomposition (Section 312.pErformance of these eigenvalue
reassignment algorithms is evaluated on two benchmarkedtidh 4: the international space
station (ISS) problem (Section 4.1), and a problem inv@\ammodel of an electrostatically ac-
tuated beam (Section 4.2). For both test cases, the ROM®astructed via the POQGalerkin
method and diier from instabilities. The numerical results reveal theesigrity of the second
stabilization algorithm over the first, and demonstratd tha second stabilization algorithm
delivers a stable and accurate ROM. Conclusions fiezedl in Section 5.

2. Projection-based model reduction for LTI systems

In this section, projection-based model reduction apgleldl'| systems is reviewed briefly.
A system is called time-invariant if the output responsedagiven input does not depend on
when that input is applied [6, 7]. In constructing a projentbased reduced order model, the
basic idea is to project the state space of a large dimensitinaosmall dimensional subspace
that contains the essential dynamics of the system. CaredeT| FOM:

%t) = AX(t)+Bu(t)
yO = Cx(). @

where “” indicates diferentiation with respect to time, i.&,= g—x; x(t) € RN is the full order
state vectoru(t) € RP is the vector of control variableg(t) € R is the output. The matrices
A e RN B ¢ RN*P andC e RN are constant matrices (in particular, they are not a functio
of timet). A system of the form (1) would arise, for instance, by di$iaing a linear set of PDEs
in space using a discretization scheme, e.g., the finiteeziemethod.

The general approach to Galerkin projection-based modelct®n consists of two steps:

Step 1: Calculation of a reduced basis of orddr with M << N.
Step 2: Projection of the governing system (1) onto the reducedsbasiome inner product.

In the present work, it will be assumed the projection is dahéhe level of the discrete
equations (1) and in thie? inner product, defined by

(u,v)=u'v, (2)

for u,v € RN. To simplify the presentation, it will also be assumed thatROM is constructed
using a Galerkin projection, where the solution is apprated by and projected onto the same
reduced basis. It is emphasized that the approaches dedeloghis work are not restricted to
ROMs constructed using Galerkin projection; a more gerfeetdov-Galerkin projection can be
employed.

Let ®dy € RV*M denote a reduced basis for (1), respectively. Assume thigxas full
columnrank, and is orthonormal in the inner product (Z)MCDLQ)M = I, wherel \y denotes
the M x M identity matrix. First, the solution to the FOM system (1agproximated as:

Xn(t) = ®uxm(t), )
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wherexy (t) denotes the ROM solution (to be determined in solving th&/lRGubstituting (3)
into (1) and projecting the resulting system onto the redi@sis®y, the following is obtained:

Amxm(t) + Bmu(t)

Xm(t)
Cuxm(t), @

ym(t)

whereyy (t) is a reduced approximation of the output, and

Ay = ®[,A®y c R™M By =®[Be R"P, Cy=CdyeRIM (5)

The dynamical system (4) is the ROM LTI system. It is smillx M with M << N), and de-
scribes accurately the dynamics of the full order systerfofdlgome set of conditions. The ROM
solution xy (t) is obtained by advancing (4) forward in time using a timeguation scheme.
Since the FOM considered here is linear, the projection geérm(5) are not time-dependent.
Hence, these terms can be pre-computed and stored irfitiee gtage of the model reduction

— in particular, they need not be re-computed at each tinpe aft¢he online time-integration
stage of the ROM. The reduced bagdig can be calculated using a number of approaches, e.g.,
POD [13, 14, 9], BPOD [19, 11], balanced truncation [16, Blalgoriented methods [10], or the
reduced basis method [15, 32].

3. ROM stabilization via eigenvalue reassignment

One problem that can arise in projection-based model restuahd addressed herein is ROM
instability. In the present work, the term “stability” reggto Lyapunov stability, defined below.

Definition 3.1 (Lyapunov-Stability [33])An LTI system (1) is stable in the sense of Lyapunov if
and only if all the eigenvalues @f have real parts less than or equal to zero, and those with real
parts equal to zero are non-repeated.

For popular model reduction techniques such as POD and BRG@M is not guaranteed
to preserve the stability properties of the FOM from whictviéts constructed. This is because
orthogonal and bi-orthogonal projections do not in genpraserve stability. Hence, for some
number of modeM, the ROM system matriR\y may be unstable even though the FOM system
matrix A is stable. This issue is particularly problematic for sgiyrstiff systems, and can arise
in computational fluid dynamics applications (e.g., higlyiR#ds number 3D turbulent flow
problems, compressible flow problems [10, 3, 4]), as well@asputational structural dynamics
applications (e.qg., the second order Lagrangian systensdered in this paper).

In the following subsections, two algorithms are propossdstabilizing (4) by modifying

the unstable eigenvalues Af, through a “black-box” post-processing step applied to tlherg
(unstable) ROM system, meaning they can be used to staBiidds fromanyapplication area.
It will be assumed from this point onward that the matdixdefining the FOM system (1) is
stable. Algorithm 2 is the primary contribution of this papélgorithm 1 is provided, as it
served as a strategic foundation for the final developmegb@hm 2). It is given here not only
for the sake of completeness, but also because it is showeciin® 3.3 that Algorithm 2 can be
seen as a variant of Algorithm 1.



3.1. Algorithm 1: ROM stabilization via full state feedbdakk.a. pole placement)

The first ROM stabilization algorithm is motivated by the ebation that (4) is an LTI
system, and, as such, can be stabilized using full statéb&sbd or pole placement, methods
from control theory [6, 7]. The general approach of stabitizan LTI system using full state
feedback is reviewed below.

Consider the open loop ROM LTI system (4), where it is assungdis given, so that
Bmu(t) represents, for instance, a given source for the equatidhg objective of full state
feedback (pole placement) is to redesign the dynamics afyjteiem (4) through feedback of the
state. IfAy is unstable, it is desired to redesign the system such thestable. Towards this
end, the open-loop system (4) is transformed into a cloged-4ystem, and a feedback controller
that positions the closed loop eigenvalues of the systemisldped. The first step is to select
a control matrixBc € RM*J for some integed, and modify the system (4) by adding to it the
controlBcuc(t):

xm(t) = Auxm(t) + Bmu(t) + Beuc(t)
ym(t) Cuxm(b).

Here,uc(t) € RY is a control that will be designed to modify the dynamics @f thiginal system
(4) such that it is stable. For an LTI system representingesphysical dynamic®c is typically
selected to represent a physical control that can be impms#te system, e.g., actuation applied
to a boundary of a fluid domain. Next, a linear control law of formuc(t) = —Kcxp(t) is
assumed, wheriéc € R¥M is the control matrix, to be determined. Substituting this into
(6) and rearranging, the following is obtained:

(6)

xm(t) = (Am —BcKc)xm(t) + Bmu(t) 7)
ym(®) = Cmxm(t).
The system (7) is a system of the form (4) but Wity replaced byAy, where
Am = Ay - BeKe. (8)

The reader can observe that if it is possible to compute thér@omatrix K¢ such thatdy is
stable, the ROM system (6) will be stable.

In order to formulate a well-posed ROM stabilization al¢fom based on the approach out-
lined above, a number of questions need to be addressed:

1. How should the control matri®c be selected? Typically, when applying pole placement
algorithms, aphysicalsystem is stabilized using@hysicalcontroller. In this case, the
controller matrixBc is added at the level of the algebraic system (6). In thisexdntvhat
doesB¢c mean? What should it mean?

2. What eigenvalues should the stabilized ROM ma#ix (8) be prescribed to have? It
is clear that the eigenvalues should lie in the stable hathefcomplex plane, but what
physical values should they have?

. Does the solutioK ¢ to the pole placement problem exist?

4. How has the stabilizationffected the accuracy of the ROM? By modifying the ROM

system (4), inconsistencies between the FOM and ROM phiisios been introduced.

w

In this subsection, only question 3, the existence questidibe addressed. Answering this
guestion gives rise to a preliminary ROM stabilization aitjon, referred to as “Algorithm 1”.
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The remaining questions are addressed through the forionulatt “Algorithm 27, described in
Section 3.2.

Before formulating an algorithm which guarantees the erist of the solution to the pole
placement problem described above, it is useful to recalfdhowing theorem.

Theorem 3.1.1quoted from [6]): If the pairAw, Bc) is controllablé?!, there exists a feedback
uc(t) = —K¢cxy such that the eigenvalues Af; (8) can be arbitrarily assigned.

In general, the pairAm, Bc) may not be controllable. However, it is possible to applgTh
orem 3.1.1 by working in the controllable and observ&bseibspaces oy andBc, which can
be isolated through the Kalman decomposition. A detailsdudision of the Kalman decompo-
sition can be found in classical control theory texts, &).,/]. The key result of the Kalman
theorem is that the state space can be decomposed into fidsr pgart that is reachable and
observable, a part that is reachable but not observablet thphis not reachable but observable
and a part that is neither reachable nor observable. Theguooe is summarized in Algorithm 1.

Algorithm 1
¢ Pick a control matriBc, €.9.,.Bc = 1u.
e GivenBc, use the Kalman decomposition to isolate the controllabteabservable parts of
A andBc, call themAfp = UAyUT andBg = UBc respectively.
e Compute the eigenvalug$’, ..., Af%, of A%
« Reassign the unstable eigenvalueaffto make them stable, e.g., fr= 1 to M, set

A = Min{Re(AS%), —Re(AL)} +i - IM(1%), (11)

whereRg2) andIm(2) denote respectively the real and imaginary parts of a cexapimber

ze C,andi = V-1.

e ComputeK ¢ such thatAf — KcBE has these eigenvalues using full state feedback (a.k.a
pole placement) algorithms from control theory.

e SetAy = UT(AS? — KcBX)U.

Typically in full state feedback, the matrBc represents a physical control that would be
applied to a physical system of the form (4) so as to stahitizesystem. The situation of interest
here is not entirely comparable, as it has been assumecdthglhysicalsystem underlying (4)
is stable (and hence does not need stabilization via full &a@back); it is thalgebraicROM

1IAn LTI system (1) is controllable (a.k.a. reachable) if foyag, x; € RN, there exists & > 0 andu : [0,T] —» R
such that the corresponding solution satisi@ = xo andx(T) = Xt [6, 7]. To test for controllability of a linear system,
it is sufficient to check the rank of the controllability matrix

We=( B, AB, ---, ANIB ). (9)

The LTI system (1) is controllable if and only if the contadility matrix (9) is invertible [7, 6].

22 An LTI system (1) is observable if for arly > 0 it is possible to determine the state of the sysw) through
measurements gf(t) andu(t) on the interval [0T] [6, 7]. To test for observability of a linear system, it isflscient to
check the rank of the observability matrix

Wi=(C CA -, CAN?). (10)

The LTI system (1) is observable if and only if the obsenigbihatrix (10) is full rank [6, 7].
7



system (4) that is unstable, and hence the m&¢ixs added to the system at the algebraic level.
This scenario complicates the interpretation of (and floeeethe choice ofB¢. In general, it
can be argued that the choice B¢ does not matter provided the unstable eigenvalues,pf
are controllable and observable given the choicBgfIn the numerical example studied below
(Section 4.1)Bc¢ is selected to be a vector of all ones.

It remains to provide some discussion of approaches foctsetethe eigenvalues of the
stabilized matrixA . One possible choice is to replace the real parts of the blestigenvalues
of Ay with their negatives (11), or some negative scaled multifléhese values. Another
option is to try to match the eigenvalues of the stabilizedvR®@atrix Ay with the eigenvalues
of the FOM matrixA (provided the computational resources to compute the FQdnealues
are available, which may not be the case for very large systeim general, the eigenvalues of
a stable ROM will lie on or near the manifold of the eigenvaleé the FOM from which the
ROM was constructed. This is illustrated in Figure 1, whibbws the eigenvalue manifold of
the FOM matrixA and a ROM matribAy, for anM = 20 mode ROM constructed via balanced
truncation [16, 5] for a variant of the international spataien (ISS) benchmark (Section 4.1).
In fact, if M = N in a ROM, that is, a ROM is constructed with a full basis of tpaseRN,
Am ~ A (as can be seen from (5)), so tha}; will have the same eigenvaluesAs

80

FOM
601 Coea. o 20 mode BT ROM

40¢ e 1

20k L ,

_80 ! ! ! ! ! !
-0.35 -0.3 -025 -0.2 -0.15 -0.1 -0.05
Re(A)

Figure 1: Eigenvalue manifold of FOM matrik and ROM matrixAy for an M = 20 mode ROM constructed via
balanced truncation for a variant of the ISS benchmark {@edt1)

3.2. Algorithm 2: ROM stabilization through solution of adrained nonlinear least squares
optimization problem

The primary downside of Algorithm 1 (Section 3.1) is it is le|ra priori how a particular
choice of the control matriB¢c and stabilized eigenvalues wilffact the accuracy of the resulting
stabilized ROM. This problem is remedied in the presenti@ed¢hrough the development of a
new algorithm, “Algorithm 2”. In this algorithm, the eigemvies of the stabilized matri&y,
are determined such that the ROM output solution deviatesnmaily from the FOM output
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solution. Hence, questions 2 and 4 in Section 3.1 are adattesselicitly. As will be clear
shortly, Algorithm 2 does not require the selection of a colmhatrix B¢ (question 1).

Consider the ROM LTI system (4). Note that it is possible takwvaut analytically in closed
form the exact solution to this system. The reader may véhidy the solution to this system is
given by

t
Xm(t) = exptAm)xm(0) +j; exp{(t — 7)Am}Bmu(r)dr. (12)

In equation (12), exp) denotes the matrix exponential. It is worthwhile to notet tiis quantity
is not an issue to compute, as the ROM system matgjixis small. Given the solution for the
ROM state vector (12), the ROM output is given by

t
yu(®) = Cy [exp¢AM)xM(0)+ fo expl(t = )AwBuu(r)dr| (13)

The existence of an analytical solution to the ROM LTI syst@nmotivates the formulation
of the following optimization problem, to be solved for thigenvalues of the stabilized ROM

system:
K

; k k (12
min - .

i DIV vl 1
st. R <0,i=1,..L

The optimization is over the unstable eigenvalues of thgitmal ROM system matridy, de-
noted by, fori = 1,..,L whereL < M is the number of unstable eigenvaluesAqf. The
shorthand/X denotes the FOM output at tintg i.e.,y* = y(tc). In a model reduction approach
based on an empirical basis computed from a set of snapshibies ligh-fidelity solution, e.g.,
the POD or BPOD method, these values are available at thelsoagimes. The shorthany,
denotes the ROM output at tinig i.e.,y',a = ym(tk). It is given by the formula (13). The con-
straint in (14) ensures that the stabilized ROM eigenvatwesn the stable half of the complex
plane HerdRgz) denotes the real part of a complex numberC. Equation (14) is a constrained
nonlinear least-squares optimization problem with indigueonstraints.

Remark that the optimization problem (14) is small: thearmostM dofs, and solving
the problem does not require operating on any matrices thaifssizeO(N). This optimization
problem can be solved using standard algorithms for canstlaoptimization, e.g., an SQP
algorithm with line search globalization, BFGS for Hessa@proximations, and an interior point
method to handle the inequality constraints [30].

An interesting question that arises is whether the solutidhe optimization problem (14) is
unigue. A stfficient condition for a minimization problem of the form

mxin f(X), (15)

wherex € R" is a real vector and : R" — R is a smooth function, to have a unique solution
is for f to be convex [30]. In this case, any stationary poinf @ a global minimizer off, and
hence a local minimizer off will be the global minimizer off. It is straightforward to show that
the objective function in (14) is not necessarily convexcsiconvexity is a diicient but not a
necessary condition for uniqueness of the solution to ¢hé)pptimization problem could have
a unique solution, but this scenario is not guaranteed. Theenical tests performed in Section
4 suggest that the optimization problem (14) has in geneudtipfe solutions.
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It turns out that it is convenient to implement and solve thgmization problem (14) in the
“characteristic variables”, defined lay (t) = Sg,llxM(t), WhereS“M1 is the matrix that diagonalizes
Awm, i.e.,Am = Su DMS‘Ml. The steps of the stabilization are detailed in AlgorithniNate that,
although it is assumed hefgy is diagonalizable, the extension to non-diagonalizaqleis
straightforward. In this case, the eigenvalue decompusiti Algorithm 2 (16) is replaced with
the Jordan decomposition.

Algorithm 2
e Diagonalize the ROM matriA y:
Am = SuDuS}- (16)
e Initialize a diagonaM x M matrix Du.
e Setj = 1.
efori=1toM

if RgDwm(i,i)) <0
SetDw(i, i) = Dwm(i, ).
else
SetD(i, i) = .
endif
endfor
e Incrementj « j + 1.
e Solve the optimization problem (14) for the eigenvalmi]% with yu(t) given by

t
Yui(t) = Cut | Sw exptBu)Syixw(0) + f S expl(t - DNDWISIBuU@dr|,  (17)
0

using an optimization algorithm.
e EvaluateD) at the solution of the optimization problem (14).
e The stabilized LTI ROM system is now given by

Anxm(t) + Buu(t)
Cumxm(t),

Xm(t)

yu(® (18)

WhereAM = Sy DM SK/I].'

3.3. Connection between Algorithm 1 and Algorithm 2

One notable dference between Algorithms 1 and 2 is that, unlike the forrtgarahm, the
latter algorithm does not employ directly full state feecdb#a.k.a. pole placement) routines
from control theory to solve for the stabilized ROM matAx,. However, it turns out that it is
possible to show that Algorithm 2 is equivalent to Algoritinfor a specific choice of control
matricesB¢c andKc.

SupposeAy hasL < M unstable eigenvaluey, each with corresponding eigenvecjr
Let 4, denote the stabilized value af, obtained by solving the optimization problem (14). The
reader can verify thaky in (18) is equivalent to

Am = An - BcKe, (19)
10



where

Bo=(s, -, § )eR™ (20)
A4- o 0o - 0
0o M- o - 0

Kc = Sy € RPM, (21)
0 0 0 -2 0

4. Numerical experiments

The performance of the ROM stabilization algorithms dédmmtiin Section 3 is now assessed
on two benchmarks: the international space station (IS&3tmaark (Section 4.1), and a bench-
mark involving a one-dimensional model of an electrosgdijcactuated beam (Section 4.2).
Although the applications considered in this section coramfthe field of structural mechanics,
the ROM stabilization algorithms developed in this work gatentially be used to build stable
ROMs forany application. For both test cases, the reduced bhgiss constructed using the
POD, and the projection step is a Galerkin projection inlthéner product. Discussed in de-
tail in Lumley [8] and Holmet al. [9], POD is a mathematical procedure in which, given an
ensemble of data and an inner product, an empirical basinistructed. This basis, the POD
basis, is optimal in the sense that it describes more energg\erage) of the ensemble in the
chosen inner product than any other linear basis of the samendionM. For a discussion of
the details of the POD algorithm, the reader is referred t8]8

Typically, the size of a reduced POD basis, nanm|yis calculated using an energy criterion.
That is, M is selected such that the reduced baBjg captures some fixed percentage of the
shapshot energy, e.g., 95% or 99% (see [8, 9]). For the prabt®nsidered herd/ is chosen
to be the smallest integer such that: (1) the b&sjs captures at least 99% of the snapshot
energy, (2) the resulting PQBalerkin ROM has at least one unstable eigenvalue, and ¢€3) th
POD/Galerkin ROM goes unstable during the time horizon consideThis strategy of choosing
M is a natural one given the objective of this paper: to evaltis# ROM stabilization algorithms
developed in Section 3.

For both test cases considered, the error in the ROM outjative to the FOM output is
calculated and reported. This error is denofiggd and computed according to the following

formula:
K K _ vk (12
Srel — Zk:liyy kygﬂnz (22)
et VXI5

Here,y* = y(tx) denotes the snapshot FOM output at titmemdy',f/1 = ym(tx) denotes the ROM
output at timety.

For the ISS example (Section 4.1) the performance of Algoril and the performance of
Algorithm 2 are evaluated. This comparison is intendedghlight the superiority of Algorithm
2 over Algorithm 1. For the sake of brevity, results for onligérithm 2 (established in the
context of the ISS example as the superior algorithm) are/sfior the electrostatically actuated
beam example (Section 4.2).

To solve the constrained nonlinear least squares optiioizat the heart of Algorithm 2
(14), thefmincon function in the MATLAB optimization toolbox [29, 30] is emgyed. The
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Algorithm option required by this function is set imterior-point with exact (analytic) Ja-
cobians. An analytic expression for the Jacobian of theadbfunction for the specific case of
u(t) = 0and one output of interest in (14) can be found in Section Ath@Appendix. Deriving
and implementing an analytic Jacobian is recommended @irg tinite diference Jacobians
calculated within the MATLAB optimization toolbox. Sincealytic Jacobians are exact, they
are accurate. In contrast, finitefidirence Jacobians can be inaccurate for some problems as a
result of an arbitrary selection of the finitefidirence increment. Moreover, the solution of the
optimization problem (14) is much faster with exact Jacoldae to fewer required function
evaluations. With exact Jacobians, the number of functi@uations per optimization step is
constant. In particular, it does not grow with the number of eigenvalues reassigned by the
optimization algorithm. The defauttnincon settings for this method are used, which can be
found in [29].

Note that theemincon function will compute only real solutions to an optimizatiproblem.
In general the eigenvalues of the mathixy may be complex, however. To allow tH@incon
algorithm to compute complex eigenvalue solutions of thé/Rsfabilization optimization prob-
lem (14), a complex-valued functional form ffb‘]‘ may be assumed. In this approaﬁg'\jn line
9 of Algorithm 2 is replaced with

A=A +i-2°€C, AL eR, (23)

(wherei = V=1) and (14) is solved fai'", 4° € R subject to the constraint tha;’ < 0. Since
complex eigenvalues @) occur in complex-conjugate pairs,/if has the form (23), thenj,1
in Algorithm 2 must have the form
/l‘j‘+1 = /l‘j‘frl —i- /l‘j‘fl e C, /lg‘frl, /l‘j‘fl eR. (24)
It follows that the approach of assuming complex-conjugaie solutions to (14) does not give
rise to more dofs than the default approach of solving for selutions to this problem. In fact,
the former approach has fewer constraints.

The numerical results section includes comparisons of elewiing CPU times for both
problems considered:

e The CPU time required for the time-integration of the FOM.

e The CPU time required for thefitine (snapshot collection, loading of system matri-
cegsnhaptions, calculation of the POD basis, Galerkin projectand numerical solution
of the optimization problem (14)) stage of the P@@alerkin ROMs.

e The CPU time required for the online (time-integrationpstaf the POPGalerkin ROMs.

All computations are performed in serial using MATLAB'sdiar algebra capabilities on a Linux
workstation with 6 Intel Xeon 2.93 GHz CPUs. Note that the FORIU times do not include
the time to discretize the relevant PDEs using the finite el@mmethod and assemble the global
system matrix. This is due to the fact that the matrices defithe FOM were downloaded from
a model reduction benchmark repository, and access togiefiuelity code that generated these
matrices is not available to the authors.

In general, ROMs are employed for many-query/andeal-time analysis. In these contexts,
it is critical that the online time-integration stage of fR®M has a low computational cost and
fast run-time. Although theflline construction of the reduced order model, which includes
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the collection of snapshots, the construction of the POlsb#d®e Galerkin projection, and the
solution of the optimization problem (14), can be compotadily intensive, this step is done
only onetime when the ROM is constructed. The cost of this computatioes not fiect the
run-time of the online step of the model reduction, the segvant to analysis using the ROM.
Nonetheless, it may be of interest how many times the ROM &vaekd to be run (online) to
compensate the cost of thellme) pre-processing step. For this reason, estimates oftimer
of online ROM runs that would be required té@'set the d&fline ROM cost are given for each
example considered following the CPU time data (Tables 58nd

4.1. International space station problem

The first numerical example considered here involves atstralcmodel of the Russian ser-
vice module component of the international space stati88)[21]. This service module is a
large flexible structure whose dynamics can be described adinearized form of the equations
of motion (a second order PDE system). Written in first ordBrform, the model consists of
a system of the form (1) wititN = 270. The matriced, B andC defining (1) are downloaded
from the ROM benchmark repository [24]. The matAxis sparse, as it comes from a finite
element discretization. A single output is consideredrgsponding to the first row of the matrix
C. Since this problem is unforcedt) = 0, the solution behavior as— oo depends only on the
real parts of the eigenvalues of the system mahrixt is verified that the FOM system is stable:
the maximum real part of the eigenvaluesfois —0.0031. The FOM will be reduced using the
POD/Galerkin method [13, 14, 9].

0.1

0.05

[ Fom
~0.057 | ynstabilized ROM
0 002 004 006 008 01

t

Figure 2: Outputs foM = 20 unstabilized PO[Balerkin ROM vs. FOM output for ISS problem

To generate the snapshots from which a POD basis will be eartet], the full order model
(1) is solved using a backward Euler time integration schestiean initial condition ofxy(0) =
In (N x 1 vector of all ones) and no inputif) = 0). A total of K = 2000 snapshots are
collected, evendtsnap = 5 X 1075, until timet = 0.1. These snapshots are used to compute a
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POD basis of sizéVl = 20, and a PO[isalerkin ROM of sizeM = 20 is constructed using this
basis. For this problem, thigl = 20 mode PODGalerkin ROM is found to be unstable with
four unstable eigenvalues. This basis captures essgrit@% of the snapshot energy, and the
valueM = 20 is the smallest basis size such that the ROM exhibits @akiisy. The numerical
values of the unstable eigenvalues atf:= 2425, 15 = 3290+ 26.99i, 13 = 3290~ 26.99,
A, = 2.712. Figure 2 shows the FOM outpyft) (in red) compared to the unstabilized ROM
output (in blue). The unstabilized ROM output diverges frtma FOM output around time
t = 0.05 and approaches» ast — co due to the ROM instability. The relative err8fg in the
unstabilized ROM output (22) is 1737.9.

TheM = 20 mode POIBGalerkin ROM for the ISS problem is stabilized first by Algbm
1, then by Algorithm 2. These results illustrate the supé@yiof Algorithm 2 over Algorithm 1.

4.1.1. Stabilization via Algorithm 1

First, theM = 20 mode unstable PQBalerkin ROM is stabilized using Algorithm 1 with
the control matrixB¢c selected to be aM x 1 vector of all onesBc = 1y. The next step in
the stabilization is to select the desired eigenvalues ®fsthbilized ROM matrid . Let A
for k = 1,...,4 denote the unstable eigenvalues Aqj, and Iet/lu denotes the correspondlng
elgenvalues of\y (that is, the valueg will be replaced Wlthln the stabilization algorithm).
Here, the following functional form foﬁ“ will be considered:

A= —a R +i-ImLY), a>0, (25)

for k = 1,...,4, whereRgZz) andIm(2) denote respectively the real and imaginary parts of a
complex number € C andi = V—1. The transformation (25) flips the sign of the real part of an
unstable eigenvalue @fy (thereby making it stable), and scales this value by a pesitbnstant

a. Three choices of the parametein (25) will be tested here:

e =01.
e =1.
e o =10.

The objective is to study the error in the stabilized ROM feveyal choices oﬂ“ The
choices are admittedly ad hoc, as there is no clear guidéinerhat the elgenvalues dm
should be. Note that asis increased, the elgenvalu;q§are pushed further into the left (stable)
half of the complex plane.

Figure 3 shows the outputs computed by the three stabilizdd $obtained using Algorithm
1. The relative errors in the stabilized ROM outputs are giveTable 1. All three ROMs are
stable (by construction). The ROM stabilized by Algorithmvith o = 1 is slightly more accurate
than the ROM stabilized by Algorithm 1 witth = 0.1. This may lead the reader to conjecture
that the accuracy of the stabilized ROM will improve as ttgeeavalues are pushed further and
further into the left half of the complex plane. However, R@M stabilized by Algorithm 1 with
a = 10 results demonstrate that this is not the case: the ROMitsittigenvalues pushed the
most into the left half of the complex plane is the least aatur

The numerical results presented here show that Algorithnoksvin the sense that it will
stabilize an unstable ROM. Unfortunately, the accuracyR©é stabilized using this algorithm
is in general unknown before the ROM is stabilized and the Ridilput is computed. Moreover,
for some choices oii“ the accuracy may be unacceptable.
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Figure 3: Outputs foM = 20 PODGalerkin ROMs stabilized via Algorithm 1 vs. FOM output f&S problem

Table 1: Relative errors iM = 20 PODGalerkin ROM for ISS problem stabilized via Algorithm 1

ROM | Gl
Unstabilized 17378
ROM stabilized via Algorithm 1 withy = 0.1 | 1.51x 1072
ROM stabilized via Algorithm 1 withy =1 | 1.16x 1072
ROM stabilized via Algorithm 1 withy = 10 | 2.26x 1072

4.1.2. Stabilization via Algorithm 2

TheM = 20 PODGalerkin ROM for the ISS benchmark is now stabilized usingokithm 2.
Let A, fork = 1, ..., 4 denote the four unstable eigenvalueggf. Two options for the eigenvalue
solutions to the optimization problem (14) are considered:

e Option 1: Solve ford! € R subject to the constraint that < 0 fori = 1,...,4.

e Option 2: Solve for 1, 45", 25%, 14 € R subject to the constraint thag, 43', 14 < 0 and
setly = A3 +i45% A5 = A3 —i45° (that is, 43 is set to be the complex-conjugate tf
=1,

Per the discussion at the beginning of Section 4, Option 2asengeneral than Option 1 and

has fewer inequality constraints. The optimization probl@4) at the heart of Algorithm 2 is

solved using the&mincon function in MATLAB’S optimization toolbox. Thel\lgorithm op-

tion required by this function is set tmterior-point, and an initial guess of1 for all the

variables is used. For functional forms of the eigenvaluesrgby both Option 1 and Option 2,

the optimization algorithm converges to a local minimunusioh in less than 30 optimization
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iterations and 30 function evaluations. Table 2 shows soayeriformation about the conver-
gence of the optimization algorithm. The reader may obstraefewer iterations and function
evaluations are required with Option 2 than with Option liokthas more constraints. Figures
4 and 5 illustrate further the performance of the optim@atlgorithm for Option 1 and Option

2 respectively. For both options, the optimality condis@me satisfied to the specified tolerance
at the value of the optimal solutiéh

Table 2: Performance @mincon interior point method for Algorithm 2 applied to ISS problem

Algorithm 2 Algorithm 2
with Option 1 (real| with Option 2 (complex-
eigenvalues) conjugate eigenvalues)
# upper bound constraints 4 3
# optimization iterations 29 27
# function evaluations 30 30
first order optimality at convergenci(|) 4.00x 1077 551x 1077
1057 107 ‘Current l‘:unction Yalue: 0.0‘0683859‘ M lOfFirs‘t—order (‘)ptimality‘ (aLp: 4‘1.008426‘—07
X XY
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Figure 4: Performance of interior point algorithm for Algam 2 with Option 1 (real eigenvalues) as a function of
iteration number (ISS problem)

An interesting question that arises is how the numbers iteTabhange witiM, the reduced
basis size. Numerical experiments reveal that it is not seardly the case that &8 increases,
more optimization iterations and function evaluationsraguired to obtain the solution to the
optimization problem (14). The performance of the intepioint method depends on a number of

33For a constrained optimization problem such as (14), thedider optimality conditions require that the gradient
of Lagrangian of the objective functido(4}, ..., 4}') be equal to zero, i.e%u =0forallk=1,...,.LwhereL < M is the

number of eigenvalues &y stabilized by Algorithm 2. A detailed discussion of this asttier optimality conditions
for the problem (14) can be found in [29, 30].
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Figure 5: Performance of interior point algorithm for Alghm 2 with Option 2 (complex-conjugate eigenvalues) as a
function of iteration number (ISS problem)

factors, including: (1) the number of optimization dofe(j.the number of unstable eigenvalues
of a ROM), (2) the number of upper bound constraints, (3) tieaacter of the objective function,
(4) the proximity of the initial guess to the optimal solutjaand (5) the tolerances used in the
optimization algorithm; noM, the reduced basis size, directly. Some additional perdoaea
results of thefmincon interior point method for Algorithm 2 applied to the ISS plain for
different (larger) values dfl are given in Appendix A.2 (Tables 10-11). For the ISS prohlaem
ROM does in general become more unstable with increadinigut more optimization iterations
are not always required (Table 10).

The eigenvalue solutions to the optimization problem (14 woth Option 1 and Option 2
are given in Table 3, compared with the values of the origimsitable eigenvalues éfy. It is
interesting to observe that the eigenvalues computed bggtimization algorithm with Option
1 are very diferent in their numerical values than those computed by thien@ation algorithm
with Option 2. Both are local minimizers of the optimizatibmction (14). As discussed in
Section 3.2, the optimization value is not guaranteed tortigue.

Table 3: Original (unstable) eigenvalues Af; for M = 20 mode PODGalerkin ROM and new stable eigenvalues
computed using Algorithm 2 (ISS problem)

Algorithm 2 Algorithm 2
Original UnstableA with Option 1 with Option 2
(real eigenvalues) (complex-conjugate eigenvalues)
Ay 242x 107 -1.32 -1.98
Ay || 3.29% 10t + 2.70x 10" -212x 1072 —6.47x 1073 + 1.42x 10
25 || 329x 10" - 2.70% 10'i -2.13x 1072 —6.47x 1073 - 1.42x 10
A 271 -1.33x10* -1.38x 10
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Table 4 gives the error in the ROM algorithm relative to theMFOutput for anM = 20
POD/Galerkin ROM stabilized via Algorithm 2 with Option 1 and @pt 2 for the ISS problem.
Both options give a ROM with a relative error betweeB% and 26%. This is a significant
improvementin accuracy compared to the same ROM stabwizedligorithm 1 (Table 1). Most
importantly, in contrast to Algorithm 1, Algorithm 2 guaters some level of accuracy in the
stabilized ROM, as it minimizes the error in the ROM outputdonstruction. Recall that the
accuracy of a ROM stabilized via Algorithm 1 is unknowpriori, and it may require some trial
and error to obtain a stabilized ROM with an acceptable €Bection 4.1.1).

Table 4: Relative errors iM = 20 PODGalerkin ROM for ISS problem stabilized via Algorithm 2

ROM || arel
Unstabilized 1.74x 10°
ROM stabilized via Algorithm 2 2
with Option 1 (real eigenvalues) 2.59x 10
ROM stabilized via Algorithm 2 5
with Option 2 (complex-conjugate eigenvalug s)2'52>< 10

Figure 6 shows the output computed from ROMs stabilizedgusiigorithm 2. The reader
may observe that the stabilized ROM outputs are in muchisgieement with the FOM output
than the ROMs stabilized using Algorithm 1 (Figure 3).
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Figure 6: Outputs foM = 20 PODGalerkin ROMs stabilized via Algorithm 2 vs. FOM output f&S problem

Table 5 summarizes the CPU times for the time-integratiem st the FOM, in addition to the
CPU times for the filine and online stages of thd = 20 PODGalerkin ISS ROM. The reader
can observe by examining Table 5 that tile= 20 online stage of the PQBalerkin ROM
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requires approximately 45 times less CPU time than the titegration stage of the FOM.
To offset the total preprocess time of the ROM (the time requireditothe FOM to collect
shapshots, calculate the POD basis, perform the Galer&jagiion, and solve the optimization
problem (14)), the ROM would need to be run approximatelyiB&s$. It is worthwhile to
note that that the optimization step of the model reductidrich consists of the solution of the
optimization problem (14) is very fast: it takes less thaniaute to complete.

Table 5: Time-integration CPU times for ISS problem: FOM Ms= 20 PODGalerkin ROM stabilized via Algorithm
2

Model I Operations | CPU time (sec)
FOM Time-Integration 171x 107
Snapshot collection (FOM time-integration) 1.71x 107
Loading of matricesnapshots 6.99x 1072
ROM - ofline stage POD 6.20
Projection 8.18x 1073
Optimizatiort 2.28x 10
ROM - online stage Time-Integration 3.77

*Optimization times reported are means of the time requivesblve (14) with real eigenvalues and the time required to
solve (14) with complex-conjugate eigenvalues.

4.2. Electrostatically actuated beam problem

The second numerical example is that of an electrostatieatuated beam. The purpose of
this second example is to verify the proposed ROM stabitinapproach for a dierent applica-
tion and to demonstrate the methodology presented in tipsrmm a larger-scale problem which
has a forcing termByu(t) # 0). Applications for this model include microelectromectuah
systems (MEMS) devices such as electromechanical radiadrecy (RF) filters [26]. Given a
simple enough shape, these devices can be modeled as oaesthimal beams embedded in two
or three dimensional space. The beam considered here isrgegn both sides, and has two
dofs: the deflection perpendicular to the beam (the flexusgllaicement), and the rotation in
the deformation plane (the flexural rotation). The equatiohmotion are determined from a
Lagrangian formulation. It is assumed that the beam dedfledsi small, so that geometric non-
linearities can be neglected. The resulting linear PDEsIm@etized using the finite element
method following the approach presented in [27, 26]. Thalted this discretization is a second
order linear semi-discrete system of the form:

MX(t) + Ex(t) + Kx(t) = Bu(t) (26)
y(t) = Cx(t),

wherex = 3_2(- The input matrixB corresponds to a loading of the middle node of the domain,

andy(t) is the flexural displacement at the middle node of the donigie damping matrik is

taken to be a linear combination of the mass maditiand the stiness matrix:

E = cuM + ckK, (27)
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with cy = 107 andck = 10°2. LettingX(t) = x(t), the second order system (26) can be written
as the following first order system:

SR U R L
y) =(c o )( o )
or 58 : é§8+ Bu(t) (29)
wherez(t) = ( Qg ) e RN and
AE(_MolK —MllE)’ és(MolB), C=(c o). (30)

The matrice andK in (26) are downloaded from the Oberwolfach model redudiiemch-
mark collection [28]. These matrices are sparse, as theydoom a finite element discretiza-
tion. These global matrices are then disassembled intoltieeil counterparts, and reassembled
to yield a discretization of any desired size. In the full@rchodel for which results are reported
here,N = 5000, so (29) has 10,000 dofs. It is verified that the full oElestem is stable: the
maximum real part of the eigenvaluesAfis —0.0016. As for the ISS example, for FOM (29)
will be reduced using the PQBalerkin method [13, 14, 9]. It is worthwhile to note that]ike
for the ISS example, the matri that defines the system (29) for the electrostatically detha
beam test case ot sparse. In particular, it is straightforward to see from) @@t this matrix

is of the formA = ( A1, A, ! whereA; € RN s sparse, buf, € RNN is dense. This
example tests therefore the performance of Algorithm 2 orohlpm defined by a dense matrix
A.

To generate the snapshots from which POD bases are coestrtioe full order model (29)
is solved using a backward Euler time integration schemk auit initial condition ofz(0) = 0
and an input corresponding to a periodigafiswitching, i.e.,
u(t) = 1, 0.005<.t <0.04,0.015<t<0.020.03<t<0.035 (31)
0, otherwise

A total of Kmax = 1000 snapshots are collected, evetyap = 5 X 1075 seconds, until time
t = 0.05 seconds. From these snapshotsiaa 17 mode POIBGalerkin ROM is constructed.
The ROM is found to be unstable, with four unstable eigereglurhese eigenvalues have the
following numerical valuesj = 16,053,145 = 48.985,15 = 12650, 1; = 0.05202. The basis
sizeM = 17 is selected since this is the smallest integer for whielR@M exhibits an instability.
It captures &ectively 100% of the snapshot energy. Figure 7 shows the FQiglby(t) (in red)
compared to the unstabilized ROM output (in blue). The iedagrror in the unstabilized ROM
output (22) evaluates taN (“not a number”) on a finite precision arithmetic machine doe
overflow caused by the ROM instability. T = 17 mode PODGalerkin ROM is stabilized by
Algorithm 2. Algorithm 1 is not considered for the sake of\itg and since the superiority of
Algorithm 2 has been established in Section 4.1.
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Figure 7: Outputs foM = 17 unstabilized PO[Balerkin ROM vs. FOM output for electrostatically actuateehm
problem

4.2.1. Stabilization via Algorithm 2

TheM = 17 PODGalerkin ROM for the electrostatically actuated beam bematk is sta-
bilized using Algorithm 2. The four unstable eigenvaluesAgf will be denoted bya, for
k = 1,..,4. Similarly to the ISS test case (Section 4.1), two optimrstiie eigenvalue solu-
tions to the optimization problem (14) will be considered:

e Option 1: Solve ford! € R subject to the constraint that < 0 fori = 1,...,4.

e Option 2: Solve fora}", 15, A, 15° € R subject to the constraint tha}", 1", < 0 and set
AL = A0+ A= AL =12, A fu/lgf +iA55, A = A3 — i3 (that is, A} is taken to be
the complex-conjugate af: 43 = 12).

Option 2 is more general than Option 1 and has fewer inequadihstraints; however, Option
1 may be more consistent with the system dynamics, as thahlastigenvalues ok are all
real. As before, th&mincon function in the MATLAB optimization toolbox will be used to
solve the optimization problem (14), with th@gorithm option set tointerior-point and
an initial guess of-1 for all four variables optimized over in (14). For the fuocial form
of the eigenvalues assumed in Option 1, the algorithm cgegein 60 optimization iterations,
and requires 64 function evaluations. For the functionainfof the eigenvalues assumed in
Option 2, which has less constraints than Option 1, feweinopation iterations and function
evaluations are required to achieve convergence: 31 ggtion iterations, and 32 function
evaluations. Some key information about the convergentteeadptimization algorithm for both
of these options is summarized in Table 6, and Figures 8 aRdrhoth options, the optimality
conditions are satisfied to the specified tolerance at theexafithe optimal solution.

Similarly to the ISS problem, Appendix A.2 (Tables 12—-13)eg some additional perfor-
mance results of thémincon interior point method for Algorithm 2 for dlierent (larger) values
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Table 6: Performance ofmincon interior point method for Algorithm 2 applied to electrastally actuated beam
problem

Algorithm 2 Algorithm 2
with Option 1 (real| with Option 2 (complex-
eigenvalues) conjugate eigenvalues)
# upper bound constraints 4 2
# optimization iterations 60 31
# function evaluations 64 32
first-order optimality at convergenc®(|) 2.27x 1077 8.43x 1077

Current Function Value: 1.13229 First-order Optimality: 2.26927e-07
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Figure 8: Performance of interior point algorithm for Algam 2 with Option 1 (real eigenvalues) as a function of
iteration number (electrostatically actuated beam prabple

of M. ROMs with larger basis sizes possess in general more uestaenvalues, and more
optimization iterations are required to obtain the solutibthe optimization problem (14) using
the interior point method.

The solutions obtained by Algorithm 2 with both Option 1 angti®n 2 are given in Ta-
ble 7, compared with the values of the original unstable reigkies ofAy. As for the ISS
benchmark (Section 4.1), the eigenvalues computed by tiimiaption algorithm with Option 1
are diferent in their numerical values from those computed by theripation algorithm with
Option 2. This suggests that the optimization function (fb#)this problem has multiple local
minimizergminima.

Table 8 gives the error in the ROM algorithm relative to theMFOutput for anM = 20
POD/Galerkin ROM stabilized via Algorithm 2 with Option 1 and @pt 2. For both options,
the relative error in the stabilized ROM output is approxXieha2%.

Finally, Figure 10 shows the output computed from ROMs $tad using Algorithm 2.
There is good agreement between the FOM output and stabR@aM outputs.
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Current Function Value: 1.23598 First-order Optimality: 8.43228e-07
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Figure 9: Performance of interior point algorithm for Alghm 2 with Option 2 (complex-conjugate eigenvalues) as a
function of iteration number (electrostatically actuabesm problem)

Table 7: Original (unstable) eigenvalues Af; for M = 17 mode PODGalerkin ROM and new stable eigenvalues
computed using Algorithm 2 (electrostatically actuatedrbgroblem)

Algorithm 2 Algorithm 2
Original UnstableAy, | with Option 1 with Option 2
A 1.61x 107 -6.88x10° | -1.16x 10° — 2.25x 10°
A 4.90x 10 -354x 107 | -1.16x 10° + 2.25x 10
A3 1.27x 10" -1.97x 10" | -3.32x10° - 1.81 x 10’
A5 5.20x 1072 -1.40x 10" | -3.32x 10% + 1.81x 1%

Table 8: Relative errors ifM = 17 PODGalerkin ROM for electrostatically actuated beam probldabiized via
Algorithm 2

ROM | Erel
Unstabilized NaN
ROM stabilized via Algorithm 2 5
with Option 1 (real eigenvalues) 194x10°
ROM stabilized via Algorithm 2 5
with Option 2 (complex-conjugate eigenvalug 5)2‘02>< 100

Table 9 summarizes some CPU times for the electrostatiealiyated beam problem: the
CPU times for the FOM, as well as the CPU times for tifiiree and online stages of thé =
17 PODGalerkin electrostatically-actuated beam ROM. The resulthis table reveal that the
online stage of the model reduction, the stage relevantdbtirae calculations involving the
ROM, took only 6.78 seconds, compared ta(0’x 10* seconds for the time-integration stage
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Figure 10: Outputs foM = 17 PODGalerkin ROMs stabilized via Algorithm 2 vs. FOM output fdeetrostatically
actuated beam problem

of the FOM. To dfset the total preprocess time of the ROM (the time requiredimahe FOM
to collect snapshots, calculate the POD basis, perform tideridn projection, and solve the
optimization problem (14)), the ROM would need to be run appmately 1x 10* times. This
large number of online ROM runs required tiset the dfline ROM cost is due to the large CPU
time associated with the FOM run for this large dense problém for the ISS problem, the
optimization step of the model reduction does not contalsignificantly to the CPU time of the
offline stage of the ROM, taking just 1.5 minutes.

Table 9: Time-integration CPU times for electrostaticadigtuated beam problem: FOM vé84 = 17 PODGalerkin
ROM stabilized via Algorithm 2

Model I Operations | CPU time (sec)
FOM Time-Integration 7.10x 10
Snapshot collection (FOM time-integratioh) 7.10x 10
Loading of matricesnapshots 5.17
ROM - ofline stage POD 1.09x 10t
Projection 2.55x 10
Optimizatiori 8.79x 10
ROM - online stage Time-Integration 6.78

*Optimization times reported are means of the time requivesblve (14) with real eigenvalues and the time required to
solve (14) with complex-conjugate eigenvalues.
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5. Conclusions

This paper presents a new approach for stabilizing unstablieced order models for LTI
systems through am posterioripost-processing step applied to the algebraic ROM systéiis. T
stabilization step consists of a reassignment of the emars of the ROM system matrix. First,
itis shown how the system’s eigenvalues can be modified biyngdd the system a linear control
term, and solving for the control matrix using full statedback (a.k.a. pole placement) algo-
rithms from control theory. This approach will yield a s&litOM provided the ROM system'’s
unstable eigenvalues are controllable and observablesvemalthough the stabilized ROM will
be stable, it may not be accurate. To ensure accuracy inahéizeéd ROM, a second algorithm
is developed, in which the eigenvalues of the stabilized Rbtem are computed by solving a
constrained nonlinear least-squares optimization proliewhich the error in the ROM output
is minimized. This problem is smalk(O(M), whereM is the number of dofs in the ROM),
and therefore computationally inexpensive to solve usiagdard optimization algorithms. The
second stabilization algorithm is the primary contribataf this paper, but both algorithms are
presented and evaluated, as the first algorithm led to tmeuiation of the second. The ROM
stabilization approaches developed herein are applital®®©Ms constructed usirgny choice
of reduced basis fanyapplication. The proposed algorithms are evaluated on emctmarks:
the international space station (ISS) problem and therelgtettically actuated beam problem.
Numerical tests reveal that the second algoritifaatively stabilizes an unstable ROM, deliv-
ering a modified ROM that is both stable as well as accuratéerisions of the new method to
nonlinear problems and predictive applications, inclgdirstudy of the robustness of the ROM
with respect to parameter changes, will be the subject aféwvork. For nonlinear problems
with stable fixed points aridr limit cycle solutions (e.g., the classical fluid mecharpcoblem
involving flow around a cylinder), a natural extension of ghgorithm would involve: (1) deter-
mining the stable fixed points of the system, (2) linearizimg system around these points, and
(3) using the algorithms developed in this paper to stabilie linearized system.

Appendix

A.1. Jacobian of objective function {4)

In this section, the analytic expression for the Jacobiatih@fobjective function in the op-
timization problem (14) for the specific case whe) = 0, y € R (there is a single output of
interest), andy' € R is derived. In many cases, it is possible to derive anallitae Jacobian
of the objective function in (14) without these simplifiedsasiptions, but this derivation will
be problem-dependent (i.e., it will depend on the specificifig u(t)). Lety* = yk € R and
y‘fw = y',§,| € R. If u(t) = 0, the objective function in (14) evaluates to:

f = |IFII3, (32)
where

CSexpDt)Sx(0) — y*
CSexpDt2)Sx(0) - y?

T
Il

e RX. (33)
CSexp@tK)'S“lx(O) —yK
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Let J denote the Jacobian #f(32). The reader can verify that
J=2J[FeR" (34)
where the k, 1) entry of Jg is given by
Je (k. 1) = 4,CSexpOiti) S *x(0), (35)

fork=1,.,Kandl =1,..., L. In equation (35),

B = T e RMM, (36)

that is, Dy is a matrix with a single entry o in the position [, I), wheref is the position of the
I!" reassigned eigenvalue in the original mafix

A.2. Additional performance results for Algorithm 2

The following tables give some additional performanceltegthe number of unstable eigen-
values, the number of upper bound constraints, the numtogathization iterations, the number
of function evaluations, and the first order optimality abwergence) for Algorithm 2 applied to
the ISS and electrostatically actuated beam problemsaeres in Sections 4.1 and 4.2 respec-
tively. These results enable one to study how these quastitiange aM, the reduced basis
size, is increased. The performance of the interior poirthoe depends more on the number
of dofs in the optimization problem (14), rather than theibaizeM directly. For the problems
considered herein, ad is increased, in general so does the number of unstablevailges of
the ROM.

Table 10: Performance dmincon interior point method for Algorithm 2 applied to ISS problexs a function ofV
(real eigenvalues)

M || 20 | 40 | 60

# unstable eigenvalues 4 5 6
# upper bound constraints 4 5 6
# optimization iterations 29 58 45
# function evaluations 30 59 46

first-order optimality at convergenc®(|) || 4.00x 1077 | 9.88x 1077 | 2.46x 107/
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Table 11: Performance dmincon interior point method for Algorithm 2 applied to ISS problas a function ofV
(complex-conjugate eigenvalues)

M I 20 | 40 | 60
# unstable eigenvalues 4 5 6
# upper bound constraints 3 3 3
# optimization iterations 27 50 62
# function evaluations 30 52 64

first-order optimality at convergenc®(|) || 5.51x 1077 | 246x 107 | 3.94x 107/

Table 12: Performance dfmincon interior point method for Algorithm 2 applied to electrastally actuated beam
problem as a function d¥1 (real eigenvalues)

M I 17 | 34 | 51

# unstable eigenvalues 4 10 14
# upper bound constraints 4 10 14
# optimization iterations 60 78 96
# function evaluations 64 82 100

first-order optimality at convergenc®(|) || 2.27x 1077 | 461x 107 | 213x 107/

Table 13: Performance dfmincon interior point method for Algorithm 2 applied to electrastally actuated beam
problem as a function d1 (complex-conjugate eigenvalues)

M I 17 | 34 | 51

# unstable eigenvalues 4 10 14
# upper bound constraints 2 5 7
# optimization iterations 31 35 78
# function evaluations 32 36 79

first-order optimality at convergenc®(|) || 8.43x 1077 | 6.20x 106 | 1.08x 107/
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